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ABSTRACT 

With the rapid development of numerous wireless network technologies and the growing number of wireless devices in use around the 

world, gaining access to the radio frequency spectrum has become a challenge that must be solved as soon as possible. The ever-increasing 

wireless traffic and shortage of accessible spectrum necessitate smart spectrum management. Machine learning (ML) is gaining 

popularity, and its capacity to spot patterns and aid decision-making has found applications in a variety of disciplines. Machine learning 

approaches have been applied to wireless networking difficulties, such as spectrum efficiency, and have showed superior performance 

compared to traditional methods. Spectrum sensing enables dynamic spectrum sharing, which improves spectrum efficiency by allowing 

coexistence of wireless technologies within the same frequency range. This involves the accurate detection and identification of multiple 

wireless signals sent in the same radio spectrum range. The current state of machine learning algorithms for identifying and classifying 

radio signals depending on their access technologies, such as Wi-Fi and LTE, is examined in this work. Classifying the RF signals based 

on their wireless network technologies as opposed to their modulation schemes, especially using machine learning, is an emerging area 

of study and is becoming a popular research topic. This survey will assist readers to become familiar with the current literature and 

enable further research in this domain. 

Index Terms – Wireless Network Technology Classification, RF Signal Classification, Neural Networks, Machine Learning, LTE, 

Spectrum Sensing, Wi-Fi. 

1. INTRODUCTION 

Over the previous decade, the quantity of wireless devices available has increased at an exponential rate. In 2018, over 30 billion 

wireless devices had accessed the internet, with that figure predicted to exceed 50 billion by 2020 [1]. It's critical to meet the 

demands of mobile consumers while also allowing devices to access the radio frequency band. The radio frequency spectrum is a 

precious resource that must be managed well for many wireless devices and technologies to coexist. According to the FCC, 

spectrum utilization varies significantly across time and space, suggesting that the existing spectrum scarcity is primarily due to 

inefficient spectrum management, as opposed to a shortage of spectrum, as stated by the authors in [2]. 

The existing radio spectrum policy allocates frequency bands to certain users for a specified length of time, allowing only licensed 

users access to the spectrum, while unlicensed users are prohibited from using it even while licensed users are not using it [3]. As 

a result, this valuable resource is being used inefficiently. As a result, researchers have started proposing new paradigms for more 

efficiently regulating the wireless spectrum. 

One such paradigm that aids in the sharing and coexistence of several wireless technologies is spectrum sensing. It enables wireless 

devices to monitor spectrum usage in a certain band at any given time and allows them to alter their communication parameters 

[4] to allow for equal spectrum access among different wireless protocols and technologies. As early as 2003, the Federal 

Communications Commission (FCC) recognized the value of cooperative spectrum access, also known as dynamic spectrum access 

(DSA), between licensed and unlicensed users to share spectrum [5]. 

Broadly speaking, spectrum sensing can be divided into two types: narrowband sensing and wideband sensing. Narrowband refers 

to a frequency range in which the frequency response is flat, implying that fading is consistent across the signal bandwidth. 

Essentially, the channel's coherence bandwidth is greater than the signal bandwidth. Wideband denotes a frequency range in which 

the frequency response is not flat, implying frequency selective fading, and the signal bandwidth exceeds the channel's coherence 

bandwidth [6]. Energy detection [7], eigenvalue-based detection [8], cyclostationary feature-based detection [9], and matching 

filter detection [10] are examples of narrowband sensing approaches. Nyquist wideband sensing – where wideband signals are 
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sampled at the Nyquist sampling rate – and sub-Nyquist wideband sensing – where wideband signals are sampled at rates below 

the Nyquist rate – are two examples of wideband sensing approaches [11]. 

Signal classification is the task of categorizing waveforms and is a subset of spectrum sensing. The majority of the research focuses 

on identifying signals based on modulation type, with the categorization of wireless network technologies becoming more popular 

in recent publications. Modulation schemes, such as 64 QAM, 16 QAM, and QPSK are shared by wireless network technologies, 

for example 5G-NR, Wi-Fi, and LTE and recognizing the RF signal's technology provides more information about the band's 

occupancy than merely recognizing the modulation process of the signal. 

This study provides an in-depth examination of the most current improvements in wireless network technology for RF signal 

classification using ML. The objective of this study is to familiarize new researchers in the field with RF signal classification based 

on their access technology and to develop the field. 

2. RELATED WORK 

The authors of [12] developed an algorithm for recognizing digital modulation types based on the signal's known changes in 

frequency, phase, and amplitude. The three attributes described previously were normalized, and the waveforms were categorized 

using a decision tree as per their digital modulation method. In [13], the authors suggested a method for classifying MPSK 

modulation schemes based on predicted values for each MPSK modulation scheme, and then determining the PSK modulation 

order by comparing the waveform's quasi-log likelihood ratio. For modulation scheme categorization, a combination of spectral 

correlation density (SCD) and a neural network was provided by Fehske et al. [14].  

Combining neural network with analytical feature extraction to classify waveforms using the extracted characteristics was shown 

to be a beneficial technique. M. Hong et al. [15] proposed using the SCD function to categorize numerous users. O'Shea et al. [16] 

used a Convolutional Neural Network (CNN) to classify 11 modulation schemes, and the results were compared to Naive Bayes, 

Deep Neural Networks, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and a decision tree. Residual Neural 

Network (ResNet) was used to classify 24 modulation schemes by the authors in [17]. The authors of [18] employed a CNN and 

bi-directional Long Short-Term Memory (LSTM) to classify transient radio interference sources and contrasted it to a model that 

used a Support Vector Machine algorithm rather than LSTM.  

It was discovered that the CNN-LSTM classifier greatly outperformed the CNN-SVM classifier in terms of classification accuracy 

for all classes. Li et al. [19] proposed utilizing a combination of CNN with one dimension to extract feature and Gated Recurrent 

Unit (GRU) to classify signals into 31 categories (four modulation types, various channel coding methods and frequency bands). 

The authors in the above literature categorized wireless signals mostly based on modulation scheme or type of interference. The 

authors, on the other hand, do not categorize signals based on common communication radio technologies like 3GPP LTE/5G and 

IEEE 802.11 (Wi-Fi). 

2.1. Survey Organization and Contributions 

This paper's contributions are summarized as follows: A summary of the machine learning methods used in wireless network 

technology classification, as well as a synopsis of present approaches and a discussion of open concerns and future study. 

The article will be structured as follows: Section 3 summarizes the machine learning algorithms used to classify wireless network 

technologies. Section 4 highlights the various machine learning algorithms to signal classification in this domain. Section 5 covers 

the field's limitations and possible future directions. Finally, Section 6 has concluding remarks. 

3. MACHINE LEARNING 

Machine learning (ML) is a technique for computers to learn without being explicitly programmed. Machine learning is gaining 

traction, with applications in a wide range of industries. Machine learning algorithms are well-known for their ability to solve 

problems requiring pattern recognition, anomaly detection, and prediction using historical data. 

A summary of the common ML algorithms used by researchers in the domain of wireless network technology classification of 

signals is provided below: 

3.1. Support Vector Machine (SVM) 

SVM is a supervised machine learning technique that can be used for data classification and regression analysis. The method was 

first published in 1963 [20] and has since evolved. One of the most popular versions that is being used today was introduced by 

Vapnik and Cortes [21] in 1995. The SVM algorithm's purpose is to generate a decision boundary (hyperplane) that divides various 

classes while maximizing the separation distance (margin). The data for categorization can be separated linearly or non-linearly. 
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Figure 1 SVM Margin for Linear Binary Classification 

Figure 1 shows the hyperplane (𝐻0) and margins (𝐻1, 𝐻2) for an SVM trained for classifying two linearly separable data. If there 

are 𝑛 elements in a dataset, the dataset can be represented as: 

{(𝑥𝑖 , 𝑦𝑖) | 𝑥𝑖 ∈ 𝑅𝑝, 𝑦𝑖 ∈ (−1,1)}𝑖=1
𝑛 (1) 

where 𝑥𝑖 is a vector of dimension 𝑝 and 𝑦𝑖  indicates the class 1 or -1 to which the data 𝑥𝑖 belongs. 

If 𝐻0 is the hyperplane, its equation is given by: 

𝐻0 = 𝑊𝑇𝑥 = 0 (2) 

where 𝑤 is a vector normal to the hyperplane. 

Given 𝐻0, two other hyperplanes 𝐻1 and 𝐻2 can be selected such that 𝐻0 is equidistant from 𝐻1 and 𝐻2, which are given by: 

𝐻1 =  𝑤𝑇𝑥 = 1;       𝐻2 =  𝑤𝑇𝑥 = −1 (3) 

Data points that are on or above the boundary 𝐻1 have label 1 and data points that are on or below the boundary 𝐻2 have label -1. 

The margin 𝑚 between the two hyperplanes is given by: 

𝑚 =
2

||𝑤||
 (4) 

The goal of the algorithm is to maximize the margin 𝑚. Finding the optimal hyperplane is an optimization problem and among the 

possible hyperplanes, the hyperplane with the smallest ||𝑤|| is selected as it has the largest margin. 

3.2. Convolutional Neural Network (CNN) 

The convolutional neural network (CNN) is a prominent image processing algorithm that was first introduced in 1989 [22]. 

Although the approach is most used for image analysis, it can also be utilized for other data analysis and classification challenges. 

CNNs are adept at seeing patterns in data and extracting relevant information. 

 
Figure 2 Architecture of a CNN 
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In a CNN, a convolution layer follows the input layer. The convolution layer consists of a set of filters. Filters are relatively small 

matrices compared to the input matrix, for example a 3x3 matrix, and are initialized with random numbers. The filters slide over 

the input matrix at defined steps known as strides. A stride of 1 implies that the filter shifts by 1 unit. As the filter slides over the 

input matrix, the dot products between the filter and the input matrix are computed. The convolution operation between a 2D input 

matrix 'x' and a 2D filter matrix 'c' is given by: 

(𝑥 ∗ 𝑐)𝑖,𝑗 = 𝑥[𝑖, 𝑗] ∗ 𝑐[𝑖, 𝑗] = ∑ ∑ 𝑥[𝑚, 𝑛] 𝑐[𝑖 − 𝑚][𝑗 − 𝑛]

𝑛𝑚

 (5) 

where 𝑚, 𝑛 are the filter height, width, respectively. 

The dot product is then passed to an activation function. One of the commonly utilized activation functions is the rectified linear 

unit (ReLU). The output of the activation function is stored. The filter moves to the next input patch and the process is repeated 

until the filter covers the entire input matrix. The ReLU function is given by: 

ℎ(𝑎) = max(0, 𝑎) (6) 

where 𝑎 is the activation function’s input. 

The convolution layer's output is a feature map that detects patterns in the input. The output 𝑦 at 𝑙𝑡ℎ neuron is given by: 

𝑦𝑙 = ℎ((𝑥 ∗ 𝑐)𝑖,𝑗 + 𝑏𝑙) (7) 

where ℎ and 𝑏𝑙 are the activation function and the bias unit, respectively. 

The feature map is followed by a pooling layer. The pooling layer consists of a small matrix, such as 2x2 matrix, which is used to 

reduce the dimensions of the feature map while retaining the important information. The most common type of pooling is max 

pooling, which selects the highest value from a patch of the feature map it slides over. The number of convolution and pooling 

layers is a configurable parameter and is not limited to one. Following the pooling layer, the CNN consists of a fully connected 

layer. The output from the pooling layer is flattened to a vector and is fed to the fully connected layer. The final layer of the CNN 

is the output layer. 

3.3. Naive Bayes Classifier 

This is a Bayes' theorem-based categorization algorithm. If 𝑥, given by 𝑥 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛}, is a feature vector of length 𝑛 is to 

be classified, the probability of 𝑥 belonging to a class 𝐴 is given by: 

𝑝(𝐴|𝑥) =
𝑝(𝐴) 𝑝(𝑥|𝐴)

𝑝(𝑥)
 (8) 

where 𝑝(𝐴|𝑥) is the probability of class 𝐴 given input 𝑥, 𝑝(𝐴) is the probability of class 𝐴, 𝑝(𝑥|𝐴) is the probability of input 𝑥 

given class 𝐴, and 𝑝(𝑥) is the probability of input 𝑥. 

3.4. K-Nearest Neighbor (KNN) 

KNN is an algorithm that classifies data based on a similarity measure, i.e., distance function. It is assumed that similar data points 

exist in proximity. If 𝑥 is the input to be classified, the class to which it belongs is given by the most common class among its K 

nearest data points, measured by a distance function. One of the distance functions is the Euclidean distance. The Euclidean 

distance between two points, 𝑥 and 𝑦, is given by: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (9) 

where 𝑥 and 𝑦 are the input point and an existing data point respectively and 𝑛 is the number of features in the data. 

3.5. Autoencoders 

The autoencoder neural network is one of the unsupervised learning algorithms used for reducing the input data's dimensions and 

reconstructing the original data from the compressed form. Autoencoders are utilized for dimensionality reduction, feature 

extraction, and have even been proposed as a method for unsupervised artificial neural network pre-training [23]. The three major 

components of an autoencoder are shown in Figure 3: an encoder, latent space, and decoder. The encoder is used to reduce the 



Journal of Network Communications and Emerging Technologies (JNCET)              

Volume 12, Issue 2, February (2022)   

  

 

ISSN: 2395-5317                                                 ©EverScience Publications   5 

    

input data's size and generate a compressed version of the data. A series of layers with a decreasing number of nodes constitutes 

the encoding layer. 

 

Figure 3 Architecture of a Standard Autoencoder 

If x is a d-dimensional input vector of real integers R, 𝑥 ∈ 𝑅𝑑, then the encoder stage output, ℎ, is given by: 

ℎ = 𝑊(𝑓𝑥 + 𝑏) (10) 

where, 𝑏 and 𝑊 represent the bias unit, weight matrix, respectively, and the activation function is given by 𝑓. 

The latent space, also called the coding space, represents the compressed data form, ℎ. The decoder attempts to reconstruct the 

original data from the compressed data. If �̅� is the reconstructed output, the compressed data ℎ is mapped to �̅� using the following 

equation: 

�̅� = 𝑊′(𝑓′ℎ + 𝑏′) (11) 

The autoencoder's purpose is to reduce reconstruction errors as much as possible, and a backpropagation technique is utilized to 

do so [24]. Using functions such as binary cross-entropy, or mean square error, the loss, 𝐿(𝑥, �̅�), between the reconstructed and 

the original data is determined. The loss function is then utilized in conjunction with a threshold to differentiate between original 

and anomalous data. 

Table 1 highlights the benefits and drawbacks of the various machine learning algorithms discussed in this survey article. 

Generally, choosing an ML algorithm depends on the nature of the data, size of the data, the available computational time, and 

desired accuracy of the output. However, it is important to experiment with various ML algorithms for a given task and dataset 

before deciding on an algorithm, since it is difficult to predict which algorithm performs the best without experimentation. 

Table 1 Advantages and Disadvantages of the ML Algorithms 

ML algorithm Advantage Disadvantage 

CNN Well suited for classifying 

images and extracting features 

from the input and can provide 

high classification accuracy. 

Requires larger datasets for 

obtaining better results and is 

computationally intensive. 

SVM Can model linear as well as 

non-linear decision boundaries 

and has several kernel functions 

for various forms of problems. 

The appropriate kernel must be 

chosen for the appropriate task, 

and it does not scale well with 

larger datasets. 



Journal of Network Communications and Emerging Technologies (JNCET)              

Volume 12, Issue 2, February (2022)   

  

 

ISSN: 2395-5317                                                 ©EverScience Publications   6 

    

Naive Bayes Simple to implement and 

provides results quickly. 

Performance is often not as 

good as other more complex 

algorithms such as SVM, that 

are tuned. 

KNN Simple to implement, 

especially for multi-class 

problems 

Performs poorly when there are 

high-dimensional data. 

Autoencoder Useful for dimensionality 

reduction and for detecting 

anomalous data 

Highly dependent on the quality 

of the input data and sensitive to 

errors in the input. 

4. MACHINE LEARNING BASED WIRELESS NETWORK TECHNOLOGY CLASSIFICATION 

In this section, the available literature on the wireless network technology classification of signals using machine learning is 

categorized based on the type of signals classified corresponding to the two major wireless technology standards, i.e., IEEE 802 

wireless standards and 3GPP standards, as shown in Figure 4. 

 

Figure 4 A Taxonomy of Wireless Network Technology of RF Signals 

Signal classification scheme 1 - between IEEE 802 wireless standards: In this category, the signals are classified between Wi-Fi, 

Bluetooth, and Zigbee standards. Signal classification scheme 2 - between 3GPP and IEEE 802.11 standards: In this category, the 

signals are classified between IEEE 802.11 and LTE standards. 

4.1. Between IEEE 802 Wireless Standards 

The authors of [25] employ a random forest classifier technique in conjunction with a SVM to recognize and classify Wi-Fi, 

Bluetooth, and Zigbee signals in order to establish the interference source in the 2.4 GHz ISM band. The authors generated the 

signals with Commercial off-the-shelf (COTS) hardware in a variety of controlled and uncontrolled conditions, primarily using the 

RSSI data from the signal bursts for time and frequency domain feature extraction. Signals with varying signal-to-noise ratio (SNR) 

were used for training the models and the models were trained in different locations such as an office area, lab area with equipment, 

etc., and while the accuracy level depended on the test environment, on average they achieved greater than 90% classification 

accuracy. The performance of SVM and random forest classifier models were comparable in their experiments. The authors of 

[26] employ CNN to classify signals in the 2.4 GHz ISM band into Bluetooth, Zigbee, and IEEE 802.11 b/g technologies. Their 

sensing bands include ten Bluetooth channels, two Zigbee channels, and three Wi-Fi channels, totaling 15 output classes. The 

model was trained on in-phase and quadrature (I/Q) data that was transformed through the Fast Fourier Transform (FFT). The 

input SNR was adjusted from -20 dB to +20 dB. Classification of the Zigbee and Bluetooth channels achieved 95% accuracy on 

average for SNR greater than -7 dB and classification of Wi-Fi channels achieved 95% on average for SNR greater than 0 dB. The 

CNN model was designed by the authors based on the paper referenced in [16]. The authors of [27] use CNN to recognize and 

classify IEEE 802.11n, Zigbee, and Bluetooth signals. COTS devices were used to transmit the signals, and a spectrum analyzer 

was used to acquire the I/Q data. For training the model, the authors used a range of scenarios, including homogeneous Wi-Fi, 

Zigbee, and Bluetooth, as well as heterogeneous Wi-Fi and Zigbee, Wi-Fi and Bluetooth, and Zigbee and Bluetooth. The SNR was 

varied between 0 and 30 dB, and a classification accuracy of 92% was achieved for SNR greater than 10 dB. Additionally, the 

authors compared the models' performance using a variety of machine learning algorithms, including SVM, Naive Bayes Classifier 

and others, and found that CNN produced the best results. 

The authors of [28] distinguished between IEEE 802.11 b/g/n protocols using KNN and Naive Bayes models. RSSI values were 

utilized to identify the pattern of a channel’s activity for the various IEEE 802.11 protocols, and thus classify them. The I/Q data 

was obtained using a spectrum analyzer, and the signals were transmitted using COTS hardware. Their results showed that Naive 
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Bayes provided better identification accuracy of about 85.9% compared to the K-nearest neighbor's accuracy of 82.05% in a 

heterogeneous environment. 

4.2. Between 3GPP and IEEE 802.11 Standards 

The authors in [29] classify between IEEE 802.11g and LTE signals using CNN. COTS hardware was used to generate the data 

and the model was trained on the I/Q samples and FFT transformation of the I/Q samples separately. The SNR of the samples 

ranged from 0 dB to 45 dB. A classification accuracy of greater than 90% was achieved when the SNR was greater than 10 dB and 

the accuracy was as high as 99% when SNR was 45 dB. The CNN model trained with FFT data performed better than the model 

trained with raw I/Q samples, especially at low (less than 15 dB) SNR values. The authors then used this capability for enhancing 

coexistence between simulated LTE and Wi-Fi transmissions in a shared spectrum. In their experiment, the LTE transmissions 

initially lasted for 20 milliseconds (ms) and remained idle for 2 ms and as soon as the neural network identified the presence of 

Wi-Fi transmissions during the idle time, the LTE system reduced its transmission duration from 20 ms to 10 ms and increased its 

idle time from 2 ms to 10 ms to allow more transmit opportunity (TxOP) for Wi-Fi. In [30], the authors classify between DVB-T, 

LTE, and Wi-Fi technologies using random forest decision trees, fully connected neural network (FNN) and a CNN across multiple 

heterogenous environments and to study the difference in performance between manual and automatic feature extractions. The 

authors have achieved an accuracy of up to 99%. 

In [31], the authors used various autoencoders, such as a deep standard autoencoder, LSTM autoencoder, and variational 

autoencoder to distinguish between LTE and IEEE 802.11 ac, IEEE 802.11 ax signals as a way of detecting anomalous RF signals 

in the wireless spectrum and compared the performance of well-known autoencoder architectures for the classification task. They 

used real-world LTE I/Q data, captured using a B210, to train all the autoencoder models and tested against various combinations 

of LTE and IEEE 802.11 ax, IEEE 802.11 ac signals, including multiple modulation and coding scheme (MCS) values, and a 

precision of 99.9% and a recall of 88.1% were achieved in their models. The authors identified that the exponential linear unit 

(ELU) was the best activation function for this task when compared to other activation functions and one of their models required 

a training time of only 47 seconds to achieve a high F1 score, making it suitable for online training and deployment. 

5. DISCUSSION AND FUTURE WORK 

Table 2 summarizes the current literature in wireless network technology classification of signals using machine learning. The use 

of machine learning for spectrum sensing has the potential to perform better as compared to traditional narrowband sensing 

approaches [32]. There is limited research in applying machine learning techniques for signal classification based on wireless 

network technology. It is an emerging focus of study as it provides more insight into the wireless spectrum occupancy than merely 

learning the RF signal’s modulation scheme and has ample scope for further research. For example, the current literature is mainly 

restricted to IEEE 802.11 b/g/n signals and later versions of the IEEE standards such as IEEE 802.11 ac/ax were only considered 

in [31]. Inclusion of the recent IEEE 802.11 protocols would be beneficial as those are being widely deployed. There are additional 

machine learning algorithms such as Gaussian Naive Bayes that can be considered for comparison with other algorithms. Although 

high classification accuracy was achieved by researchers at high SNRs, there is an opportunity for improving the accuracy at low 

SNRs as well. There is also an opportunity to reduce the time taken to train a model thereby increasing the efficiency of the 

identification and classification process. The ability to identify different radio signals in each spectrum band allows the 

identification of the source of an interference in a given spectrum band and it also enables dynamic spectrum access and machine 

learning techniques have the potential to achieve those results in an efficient way. 

Table 2 Summary of Current Literature for Wireless Network Technology Classification Using ML 

Wireless network 

technology classified 

Input data Input SNR 

range 

ML model(s) Metric(s) for 

classification 

Maximum 

classification 

results achieved 

IEEE 802.11 b/g/n, 

Zigbee, Bluetooth  

[25] 

RSSI values 0 dB to 30 dB Random Forest 

Classifier, SVM 

Accuracy 98%, 96% 

respectively 

IEEE 802.11 b/g, 

Zigbee, Bluetooth 

[26] 

I/Q values -20 dB to 20 

dB 

CNN Accuracy 99% 
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IEEE 802.11 n, 

Zigbee, Bluetooth 

[27] 

I/Q values 0 dB to 20 dB CNN Accuracy 93% 

IEEE 802.11 b/g/n 

[28] 

RSSI values n/a KNN, Naïve Bayes Accuracy 82%, 85.9% 

respectively 

IEEE 802.11g, LTE 

[29] 

I/Q values 0 dB to 45 dB CNN Accuracy 99% 

IEEE 802.11, LTE, 

DVB-T [30] 

RSSI, I/Q, 

FFT, 

Spectrogram 

-15 dB to 30 

dB 

FNN, Random 

Forest Classifier, 

CNN 

Accuracy 87.4%, 88.6%, 

99%, 

respectively 

IEEE 802.11 ax, IEEE 

802.11 ac, LTE  [31] 

I/Q values 

along with 

phase and 

amplitude 

components 

n/a Deep standard, 

LSTM, and 

variational 

autoencoder 

Precision, Recall, 

F1 score 

99.9%, 88.1%, 

0.93 

respectively 

6. CONCLUSION 

In this paper, a survey on the current literature using machine learning to classify the signals based on their wireless network 

technology has been provided with the intention of enabling new researchers to become familiar with this field and to enable 

further research. The survey paper provides a summary of the most widely utilized machine learning algorithms in this discipline 

and discusses the limitations of the current methodologies and potential future work. Radio spectrum access is a challenge that 

needs to be addressed as billions of wireless devices require connectivity and the number of devices will only increase in the future. 

Dynamic spectrum access has the potential to mitigate spectrum scarcity concerns and the ability to detect various radio signals in 

a spectrum band is beneficial for this purpose. 
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